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S U M M A R Y
Seismic tomography has been one of the primary tools to image the interior of the earth
and other elastic structures. To date the inversions of compressional (P) and shear (S) wave
speeds have been carried out separately under the assumption that P traveltimes are affected
only by the P wave speed of the elastic media and S traveltimes by the S wave speed. Using
numerical and analytical solutions, we show that for finite-frequency seismic waves, S wave
speed perturbations may have significant effects on P waveforms. This suggests that when
waveform-derived traveltime and amplitude anomalies are used in tomographic inversions, the
P-wave measurements should be related to not only P wave speed perturbations but also S
wave speed perturbations.

Key words: Seismic tomography; Computational seismology; Theoretical seismology; Wave
scattering and diffraction; Wave propagation.

I N T RO D U C T I O N

For many years, seismologists have made fundamental discoveries

about the earth’s interior, using rays to describe the propagation of P
and S seismic waves. However, with the increasing need for more ac-

curate images of the earth structure at fine resolution, the limitations

of ray theory become problematic. Several recent studies have de-

veloped a new theory that describes the sensitivities, or Fréchet ker-

nels, of the traveltimes and amplitudes of finite-frequency seismic

waves to perturbations in the properties of wave-propagation media

(Dahlen et al. 2000; Zhao et al. 2000, 2005; Tromp et al. 2005). For

a finite-frequency wave, the sensitivities to the elastic and anelastic

properties are in general distributed in a 3D volume surrounding the

ray path. Numerical experiments have demonstrated that, within the

limit of Born approximation, the finite-frequency theory represents

the propagation of realistic seismic waves more accurately than ray

theory when the scales of wave speed heterogeneities are smaller

than the Fresnel zones of the waves (Hung et al. 2000; Baig et al.
2003; Yang & Hung 2005; Zhang et al. 2007).

To date the inversions of P and S wave speeds have been carried

out separately under the assumption that P traveltimes are affected

only by the P wave speed of the elastic media and S traveltimes by

the S wave speed (e.g. Dziewonski & Anderson 1984; Grand 1987;

Zhao et al. 1992; van der Hilst et al. 1997). With the approxima-

tions of only forward scattering of body wave and far field, Dahlen

et al. (2000) considered that only P-to-P scattering off a compres-

sional wave speed heterogeneity and like-type S-to-S scattering off

a shear wave speed heterogeneity are significant. Although several

studies have documented the scattering of wave field by an arbitrary

heterogeneity (Wu & Aki 1985) and have calculated the sensitivity

kernels with the near-field terms or in a full-wave approach (Favier

et al. 2004; Tromp et al. 2005; Zhao et al. 2005; Liu & Tromp

2006), the assumption that the propagation of P or S waves depends

solely on the P or S wave speed structure, respectively, has remained

unchanged in the applications of the finite-frequency theory to date

(Hung et al. 2004; Montelli et al. 2006; Yang et al. 2006; Chen et al.
2007). In this paper, we document the contributions of S wave speed

perturbations to the P-wave traveltimes and amplitude anomalies

using numerical and analytical solutions. We conclude that neglect-

ing the cross-dependence between P waveforms and S wave speed

perturbations distorts the forward relation between the wave prop-

agation medium and observations and may cause a systematic bias

in the solution of P wave speeds.

M O D E L S A N D R E S U LT S

To demonstrate the cross-dependence of P and S waveforms and

wave speed perturbations, we carry out numerical experiments us-

ing a 3-D staggered-grid, finite-difference method (Olsen 1994).

We use a simple homogenous model as our reference model, so the

results can be compared to and also analysed with the analytical

solutions. The P and S wave speeds in the reference model are 6.5

and 3.5 km s−1, respectively. The grid spacing is 200 m, and the

time step 0.01 s. We introduce a cylindrical-shaped velocity pertur-

bation with a radius of 3 km, a height of 6 km at various depths

along a vertical line between the source and receiver, the axis of

which is always oriented vertically in the Z direction (Fig. 1). The

traveltime and amplitude anomalies caused by the wave speed per-

turbation are measured by cross-correlation of the waveforms with

and without the wave speed perturbation. For simplicity, an explo-

sive source with a dominant period of 1.2 s is used to observe the

direct P arrival. When only the P or S wave speed is perturbed, the

sensitivities to the P or S wave speed perturbations (Fig. 2) cal-

culated using the scattering-integral method (Appendix A) predict
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Figure 1. The geometry of the homogeneous and isotropic model used in

the numerical simulations. The rectangle with solid lines shows the vertical

cross-section of the model containing the source (star) and receiver (trian-

gle). The horizontal distance from the source to the receiver is 53 km, or

approximately 7.4 wavelengths of the dominant P wave. The vertical line

in between the source and receiver shows where a cylindrical-shaped wave

speed anomaly is placed.

the P traveltime and amplitude anomalies that accurately match the

direct waveform cross-correlation measurements (Fig. 3). Since the

density remains the same in all the calculations, a perturbation in

only the P wave speed is equivalent to a perturbation in the bulk

modulus, while a perturbation in only the S wave speed corresponds

to changes in both the bulk and shear moduli. When both the P
and S wave speeds are perturbed within the cylindrical anomaly,

however, the predicted P traveltime and amplitude anomalies from

the sensitivities to P wave speed perturbations alone do not match

the direct waveform cross-correlation measurements (Fig. 3). Only

after we add the contributions from the sensitivities of the P arrival

to S wave speed perturbations, do the kernel predictions match the

values from the direct waveform cross-correlation, indicating that

S wave speed perturbations affect the P arrival. On the other hand,

P wave speed perturbations have little effect on the direct S arrival

in the experiment using a double-couple source to generate S waves

(Fig. 3).

The sensitivities of P traveltime to P wave speed perturbations

(K P
α,p , Fig. 2) are similar to the classic ‘banana—doughnut’ kernels

of Dahlen et al. (2000), with a minimum sensitivity along the ray

path, though in this study the ray path is a straight line and the kernels

are calculated from the full wavefield. In contrast, the sensitivities

of P traveltime to S wave speed perturbations are at the maximum

along the ray path (K P
β,p). The patterns of the sensitivities for P

amplitude variation to P and S wave speed perturbations are also

reversed: the maximum amplitude sensitivities along the ray path

for P wave speed perturbations (K P
α,q ) and minimum sensitivities

along the ray path for S wave speed perturbations (K P
β,q ).

In a homogeneous and isotropic medium, as in the above nu-

merical experiments, the sensitivity kernels to P and S wave speed

perturbations can also be calculated from the analytical wavefield

solutions (Aki & Richards 2002) and the results confirm the finite-

difference calculations. Using various combinations of the near-

and far-field terms for the source and receiver, we find that both the

far- and near-field terms from the source and receive contribute to

the P traveltime and amplitude sensitivities to S wave speed per-

turbations. In particular, the near- and mid-field terms are mainly

responsible for the sensitivities along the ray path (more in the fol-

lowing section). Furthermore, the ratio of the maximum, absolute

traveltime sensitivities to S wave speed and P wave speed perturba-

tions (K P
β,p/K P

α,p) is approximately 4λPβ2/(lα2) at the mid point

between the source and receiver, where λP is the wavelength of the

P wave, l the source–receiver distance, α the P wave speed, and β

the S wave speed. Using the parameters in our numerical experi-

ments (Fig. 1), we find a ratio of about 0.17, consistent with the

sensitivity kernels (Fig. 2) and direct waveform cross-correlation

measurements (Fig. 3).

Although a homogeneous and isotropic medium is an oversim-

plification of the real Earth, the above formula for the relative mag-

nitude of the sensitivities to P and S wave speed perturbations pro-

vides a simple way to assess, to the first order, the condition under

which the contributions of S wave speed perturbations to P wave-

forms are nontrivial. For a medium with a α/β of 1.7–2.0, a value

suitable for most of the solid earth, the ratio of the maximum travel-

time sensitivities to S wave speed and P wave speed perturbations at

the mid point between the source and receiver decreases from ∼0.17

for a source–receiver geometry with l/λP of ∼7.4 to ∼0.017 for a P
wave of the same wavelength at 10 times the propagation distance

(l/λP = 74).

To assess the global relative contributions of P and S wave speed

perturbations to P traveltimes and amplitudes, we integrate the ab-

solute values of the sensitivities over the entire volume. For P-wave

traveltimes, the ratio of the integrated absolute values (K P
β,p/K P

α,p)

varies from 4.1 per cent at l/λP of ∼600 to 31 per cent at l/λP of ∼7

(Fig. 4). For P-wave amplitude anomalies, the ratio of the integrated

absolute values (K P
β,q/K P

α,q ) changes from 2.7 to 49 per cent at the

same corresponding distances.

D I S C U S S I O N

In the above calculations, the magnitude of S wave speed perturba-

tions is the same as the magnitude of P wave speed perturbations.

In the real Earth, S wave speed variations are usually larger than

P wave speed variations in percentage (e.g. Karato & Karki 2001).

One per cent of partial melt in the upper mantle, for example, is esti-

mated to cause 3.6 per cent P wave speed reduction and 7.9 per cent

S wave speed reduction (Hammond & Humphreys 2000). The net

effect of a larger S wave speed perturbation than the P wave speed

change is an increase of the contribution and importance of S wave

speed variations to P waveforms. P and S wave speed variations

are also often coupled in the real earth. In such a case, a small-

scale perturbation along the ray path affects P waveforms when

both P and S wave speeds are taken into consideration. This proves

to be important in the numerical validation of the sensitivity kernels

(Fig. 3).

Separating the far-field term (with 1/r decay, where r is the dis-

tance to the source or receiver) from the mid- and near-field terms

(with 1/r2 decay and 1/r3 decay, respectively) in the analytical so-

lution of a homogeneous and isotropic medium (Aki & Richards

2002), we find that the sensitivities of P traveltime to P wave speed

perturbations calculated from the far-field alone are the same as

the ‘banana–doughnut’ kernels of Dahlen et al. (2000), with a zero

traveltime sensitivity along the ray path (Fig. 5). The far-field P trav-

eltime sensitivity to S wave speed perturbations is also zero along

the ray path. However, off the ray path the sensitivity is nontrivial

compared to the sensitivity to P wave speed perturbations (Fig. 5).

Unlike the scattering of a P wave by a P wave speed perturbation,

the far-field Rayleigh scattering coefficient of a scattered P wave

due to an S wave speed perturbation is zero on the ray path (fig. 4
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Figure 2. (a) The sensitivity kernels for the horizontal component of the direct P arrival in the vertical plane containing the source and receiver. K P
α,p and K P

α,q

are the traveltime and amplitude sensitivity kernels to P wave speed perturbations, respectively; K P
β,p and K P

β,q are the traveltime and amplitude sensitivities

to S wave speed perturbations, respectively. The unit of the traveltime sensitivity is s m−3 and that of the amplitude sensitivity is 1 m−3 (Zhang et al. 2007).

(b) The K P
α,p , K P

α,q , K P
β,p and KsP

β,q sensitivities at three vertical planes perpendicular to the ray path. The black line crossing the three planes represents the

ray path. The source is located at the left-hand side of this figure. The three planes are 6.5, 26.5 and 46.5 km away from the source, respectively. Less saturated

and different colour scales are used to illustrate the details of the kernels.
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Figure 3. The waveform cross-correlation measurements of the traveltime and amplitude anomalies caused by the cylindrical-shaped wave speed perturbation

are compared to the predicted values from the sensitivity kernels. The horizontal axes are traveltime or amplitude anomaly, and the vertical axes are the depth

of the centre of the cylindrical-shaped wave speed perturbation along the vertical line between the source and receiver in Fig. 1. The left-hand panels are for

the direct P arrival. The right-hand panels are for the direct S arrival when a double couple source is used. The top row is for the model with only P wave

speed perturbations (a square cosine function with the 3 per cent maximum at the centre of the perturbation and zeros at the boundaries), the middle row

for the model with only S wave speed perturbations of the same magnitude, and the bottom row for the model with both P and S wave speed perturbations

(3 per cent uniform).

Figure 4. The relative magnitudes of the integrated absolute P traveltime

(asterisk) and amplitude (triangle) sensitivities to S and P wave speed pertur-

bations vary with the normalized distance between the source and receiver.

The P and S wave speeds of the medium and the source time function are the

same as in the numerical experiment (Fig. 1). At one wavelength distance,

the ratios are 110 per cent for traveltime and 540 per cent for amplitude (off

scale).

in Dahlen et al. 2000). This causes a noticeably wider ‘doughnut’

hole in K P
β,p compared to that of K P

α,p .

Keeping the far-field term on the source side but including also

the near- and mid-field terms on the receiver side results in the P
traveltime sensitivity to S wave speed perturbations along the ray

path, with the most significant change on the receiver side (Fig. 6).

The change of K P
β,p from the zero sensitivity along the ray path in

the case with only the far-field term (Fig. 5) to the local maximum

sensitivity in Fig. 6 is attributed to two factors. First, the scattering

coefficient for a mid-field scattered P wave due to an S wave speed

perturbation is the maximum along the ray path (Aki & Richards

2002; Favier et al. 2004). Second, the mid-field term of a scattered

wave is proportional to the time derivative of the reference displace-

ment at the receiver (Aki & Richards 2002). For such a perturbed

waveform, the delay time calculated by eq. (A1) in Appendix A

is the maximum when there is no offset in the arrival times of the

reference and scattered waves (in other word, when the scatter is on

the ray path).

Replacing the far-field term on the source side with the near- and

mid-field terms while keeping the full terms on the receiver side

reveals that the near- and mid-field terms on the source side also

contribute to the P traveltime sensitivity to S wave speed perturba-

tions along and near the ray path, with a stronger sensitivity near the

source (Fig. 7).
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Figure 5. Far-field P traveltime and amplitude sensitivity kernels to P (top panels) and S (bottom panels) wave speed perturbations in the vertical plane

containing the source and receiver. The units of the sensitivities are the same as in Fig. 2.

Figure 6. The P traveltime and amplitude sensitivity kernels to P (top panels) and S (bottom panels) wave speed perturbations are calculated with the

contributions from the far-field term on the source side and all the field terms on the receiver side. The vertical cross-section contains the source and receiver

and the units of the sensitivities are the same as in Fig. 2.

We note the sensitivity to S wave speed perturbations oscillates

from negative to positive values away from the ray path (Figs 2, 3

and 6). Unlike the sensitivity to P wave speed perturbations, inte-

gration of the sensitivity to S wave speed perturbations in a plane

perpendicular to the ray path causes the cancellation of the positive

and negative values. A uniform S wave speed perturbation in a plane

perpendicular to the ray path yields no travel time anomaly in the P

arrival. This means that S wave speed perturbations that are much

larger than the width of the Fresnel zone (∼ 2
√

λl when l � λ,

where l is the distance to the receiver and λ the wavelength, Dahlen

et al. 2000) contribute little to P waveform perturbations. Integrat-

ing P delay times caused by the near-, mid- and far-field terms in

planes perpendicular to the ray path, Favier et al. (2004) noted that

the far-field term becomes predominant at distances greater than

C© 2008 The Authors, GJI, 174, 941–948
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Figure 7. The P traveltime and amplitude sensitivity kernels to P (top panels) and S (bottom panels) wave speed perturbations are calculated with the

contributions from the near- and mid-field terms on the source side and all the field terms on the receiver side. The vertical cross-section contains the source

and receiver. The units of the sensitivities are the same as in Fig. 2.

Figure 8. A cartoon illustrating wave propagation due to a scatter. The star

represents a source, the triangle a receiver, and the circle a scatter. If only

the P wave speed is perturbed, only P wave is scattered by the scatter (the

upper figure). But both P and S waves are scattered if the S wave speed is

perturbed (the lower figure).

1/20th wavelength from the receiver and concluded that the mid-

field term cannot be neglected at distances within one wavelength

from the receiver. However, for heterogeneities on the scale of, and

smaller than, the width of the sensitivity kernels (in other words in

places where the finite-frequency kernels matter for tomography),

the absolute or maximum sensitivities are more meaningful values

to assess the relative importance of the finite-frequency kernels to P
and S wave speed perturbations. Fig. 4 shows that the contributions

of S wave speed perturbations to P traveltime and amplitude anoma-

lies are substantial at distances within several tens of wavelengths

from the source and receiver. So this cross-dependence of P trav-

eltime and amplitude on S wave speed is a typical finite-frequency

effect, important where the scale of the velocity heterogeneity is

comparable or smaller than the Fresnel zone of the wave.

Our results differ from the common practice in tomographic in-

version, in which P-wave traveltimes depend only on P wave speed

and S-wave traveltimes only on S wave speed. This common prac-

tice may stem from two well-known theoretical derivations: the

Helmholtz poterntial decomposition in a homogenous isotropic me-

diaum, and ray theory, in which the spatial gradients of the elastic

properties are neglected under the high-frequency approximation

(e.g. Dahlen & Tromp 1998; Aki & Richards 2002). The effects of

S wave speed perturbations on P waveforms presented in this pa-

per result from the terms neglected by ray theory. For general elastic

media, the spatial gradients of the elastic properties result in a scalar

(P) wave potential that explicitly depends on the spatial gradient of

the S wave speed (Appendix B). The finite-frequency kernels quan-

titatively reflect that there is only scattered P wave when only P wave

speed is perturbed. But an S wave speed perturbation generates both

scattered P and S wave (Fig. 8).

Although the reference model used in this paper is an isotropic and

homogeneous medium, the spatial gradient in the elastic properties

must be considered once a wave speed perturbation is introduced

into the medium. The numerical approach shown in Fig. 2 can be

applied to any general inhomogeneous media, in which the finite-

frequency phenomena documented in this paper should also exist.

C O N C L U S I O N S

For finite-frequency waves, S wave speed perturbations may have

significant effects on P waveforms. Whether this cross-dependence

is small enough to be neglected depends on the scale of wave speed
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heterogeneities in the Earth and achievable resolution in specific

studies. At short source–receiver distances (Fig. 4) and near the

source and receiver, the cross-dependence of P waveforms on S
wave speed is substantial. This has important implications for seis-

mic tomography, particularly for regional teleseismic tomography

and local earthquake tomography, in which the volume of interest

is often within several 10s of wavelength from receivers or both

sources and receivers. Even for regions far from sources and re-

ceivers, neglecting this cross-dependence means that the estimate

of the P wave speed near the source (e.g. subduction zone) and re-

ceiver is likely biased and such errors may propagate into the rest

of the model in tomographic inversions. When the goal of tomo-

graphic inversion is to place constraints on thermal and composi-

tional variations in the crust and mantle, the cross-dependence of P
waveforms on S wave speed variations documented above becomes

important and requires a joint solution of both the P and S wave speed

structures.
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A P P E N D I X A : C A L C U L AT I O N O F T H E S E N S I T I V I T I E S B Y T H E S C AT T E R I N G

I N T E G R A L M E T H O D

We define the traveltime and amplitude anomalies, δτp and δAq, respectively, as (Tanimoto 1995; Dahlen et al. 2000; Zhao et al. 2005):

δτp = −
∫ t2

t1
˙̃ul (t)δul (t)dt∫ t2

t1

∣∣ ˙̃ul (t)
∣∣2

dt
(A1)

δAq = −
∫ t2

t1
ũl (t)δul (t)dt∫ t2

t1
|ũl (t)|2dt

, (A2)

where ũl (t) is the displacement calculated from the reference model in the direction êl , a unit vector; δul (t) = ul (t) − ũl (t); ul (t); is the

displacement for the perturbed velocity model; a dot represent the time derivative; t1 and t2 are the upper and lower limit of the time window of

the arrival. The amplitude anomaly defined here is different from that in Zhao et al. (2005) by a constant. Following the same algebra in Zhao et al.
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(2005), we have:

Kα,p = 1

Pl

∫ t2

t1

2ρ̃α̃ ˙̃ul (rR, t ; rS)

∫ ∞

−∞
êl · [(∇ · G̃T )(∇ · ũ)]dτdt (A3)

Kα,p = 1

Ql

∫ t2

t1

2ρ̃α̃ũl (rR, t ; rS)

∫ ∞

−∞
êl · [(∇ · G̃T )(∇ · ũ)]dτdt (A4)

Kβ,p = 1

Pl

∫ t2

t1

2ρ̃β̃ ˙̃ul (rR, t ; rS)

∫ ∞

−∞
êl · {((∇G̃213) : [(∇ũ) + (∇ũ)T ] − 2(∇ · G̃T )(∇ · ũ)}dτdt (A5)

Kβ,q = − 1

Ql

∫ t2

t1

2ρ̃β̃ũl (rR, t ; rS)

∫ ∞

−∞
êl · {((∇G̃213) : [(∇ũ) + (∇ũ)T ] − 2(∇ · G̃T )(∇ · ũ)}dτdt, (A6)

where the G̃ is the Green’s tensor. The symbol ()213 represents the transposition of the first and the second indices of a third-order tensor. Pl

and Ql are the normalization factor in the direction êl , which are:

Pl =
∫ t2

t1

∣∣ ˙̃ul (t)
∣∣2

dt (A7)

Ql =
∫ t2

t1

|ũl (t)|2 dt . (A8)

For the direct P wave, for example, the sensitivity kernels to P and S wave speed perturbations, K P
α,p and K P

β,p , are calculated from eq. (A3)

and (A5), respectively, with a time window (t1, t2) that contains the P arrival.

A P P E N D I X B : WAV E E Q UAT I O N R E P R E S E N T E D B Y T H E H E L M H O LT Z P O T E N T I A L

The cross-dependence of P waveforms to S wave speed perturbations and the lack of effects of P wave speed perturbations to S waveforms

can be understood from the elastodynamic equation,

ρ
⇀̈
u = ∇ · →→

σ , (A9)

where ρ is density,
→
u displacement, and

→→
σ stress. For simplicity, the body force term is omitted in the equation. The displacement can be

represented by the Helmholtz scalar potential of P wave, φ, and the vector potential of S wave,
→
ψ (e.g. Aki & Richards 2002),

⇀
u = ∇φ + ∇ × ⇀

ψ with ∇ · ⇀

ψ = 0. (A10)

Using the linear, isotropic stress–strain relationship, taking the divergence and curl of eq. (A9), and assuming a constant density, we have,

∇2φ̈ = ∇2(α2∇2φ) + 2∇ · [∇∇ × ⇀

ψ · ∇β2 + ∇∇φ · ∇β2 − ∇β2∇2φ] (A11)

∇ × ∇ ×
⇀̈

ψ = −∇ × ∇ × [β2∇ × ∇ × ⇀

ψ] + 2∇ × [∇∇ × ⇀

ψ · ∇β2 + ∇∇φ · ∇β2 − ∇β2∇2φ]. (A12)

While eq. (A11) shows that the P-wave scalar potential φ is explicitly related to the P wave speed, α, and the spatial gradient of the S wave

speed, β, the S-wave vector potential
→
ψ is related only to β in eq. (A12). Although eq. (A12) includes two terms related to φ, they have no

effect on
→
ψ , where the spatial gradient in S wave speed is zero or when

→
ψ and φ are separated in the time domain.
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