High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions

Xueyang Bao,1 Eric Sandvol,1 James Ni,2 Thomas Hearn,3 Yongshun John Chen,3 and Yang Shen4

Received 3 May 2011; revised 14 July 2011; accepted 14 July 2011; published 18 August 2011.

1. Introduction

[2] Lg is typically a prominent high-frequency seismic phase at regional distances traveling in the continental crust. The measurement of Lg attenuation, typically described by a frequency dependent quality factor Q\(_{Lg}\), has been suggested as an approximation for Q\(_{cr}\) of the crust [Mitchell, 1995]. Thus Q\(_{Lg}\) could be used to interpret crustal temperature and rheology. The spatial and temporal variation of crustal heating and melting in the TP is an essential element in nearly all geodynamic models for plateau uplift [McKenzie and Priestley, 2008]. An important but often ignored measure of the present day thermal state of the TP crust is its high frequency seismic attenuation properties. There have been numerous studies of Lg attenuation in Tibet and adjacent areas over the last three decades, most of which obtain high attenuation throughout the TP [e.g., McNamara et al., 1996; Reese et al., 1999; Phillips et al., 2000; Xie, 2002; Fan and Lay, 2003]. Unfortunately, many of these studies have obtained inconsistent results, probably because they were obtained with different methods and databases. In this study, we apply a Reverse Two-station/event Method (RTM) [Chun et al., 1987] in eastern Tibetan Plateau using seismic records from several newly deployed seismic networks that nearly cover the entire eastern half of the TP. This method has been suggested to be very accurate [Ford et al., 2008] and can greatly improve existing models of crustal attenuation in this area.

2. Method

[3] The RTM is a significant improvement upon the Two-Station Method (TSM) [Xie and Mitchell, 1990]. The TSM assumes that the variation in site responses is negligible. Previous studies, however, have suggested that the site effects are non-unique, nonlinear, and frequency-dependent, as well as possessing strong lateral variations [e.g., Jemberie and Langston, 2005]. The RTM avoids the effects of site response variation and inaccurate instrument responses. Figure S1 in the auxiliary material shows the geometry of the RTM including its two cases: the Reverse Two Station (RTS) paths and Reverse Two Event (RTE) paths.1 The RTM Q\(_{Lg}\) can be calculated as:

\[
\frac{1}{Q_{Lg}} = \frac{V_{Lg}}{\pi f (d_{aij} + d_{bij} - d_{ai} - d_{bj})} \ln \left( \frac{A_{ai}A_{bij}d_{bij}^{-m}}{A_{ai}A_{bij}d_{aij}^{-m}} \right) \quad (1)
\]

where A\(_{ai}\), A\(_{aj}\), A\(_{bi}\), A\(_{bj}\) denote spectral amplitude of Lg recorded at stations i and j for events a and b, d\(_{ai}\), d\(_{aj}\), d\(_{bi}\), d\(_{bij}\) the corresponding distances, f the frequency, m the geometrical spreading coefficient (0.5 in frequency domain), and V\(_{Lg}\) the group velocity of Lg (about 3.5 km/s). We obtain the Q\(_{Lg}\) from (1) by solving a linear regression problem in the frequency domain. The case of RTE has the advantage to fill in the area devoid of station, which increases the utility of the RTM, and can become effective in constructing models in areas that are seismically active but without dense seismic networks.

[4] The inter-station site response difference can also be solved by using the RTM:

\[
\ln \left( \frac{SS_i}{SS_j} \right) = \ln \left( \frac{T_i}{T_j} \right) + \frac{d_{ai} - d_{aj}}{d_{ai} + d_{ai} - d_{aij} - d_{bij}} \ln \left( \frac{A_{ai}d_{bij}^{-m}}{A_{ai}d_{aij}^{-m}} \right) + \ln \left( \frac{A_{bi}d_{bij}^{-m}}{A_{bj}d_{aij}^{-m}} \right)
\]

\[
+ \frac{d_{bi} - d_{bj}}{d_{aij} + d_{ai} - d_{aij} - d_{bij}} \ln \left( \frac{A_{ai}d_{bij}^{-m}}{A_{bi}d_{aij}^{-m}} \right) \quad (2)
\]

1Auxiliary materials are available in the HTML. doi:10.1029/2011GL048012.
A similar problem to (2) was discussed by Moya and Irikura [2003]. We apply an LSQR algorithm [Paige and Saunders, 1982] to calculate the lateral variation in relative site responses for each station. The relative values of source excitation function \( S \) can be obtained using a similar method. The \( S \) has been modeled as a function of seismic moment \( M_0 \) [Brune, 1970], which can be estimated from earthquake moment magnitude [Hanks and Kanamori, 1979]. This suggests that the \( S \) derived from the RTM can be used to infer the source magnitude.

3. Data Collection and Processing

[5] The data analyzed in this study are waveforms recorded at 6 permanent broadband seismic stations from New China Digital Seismograph Network (CDSN) and 217 temporary broadband seismic stations from Namche Barwa Tibet, MIT-China, ASCENT, INDEPTH-IV-UK, and part of Northern Tibet Plateau Seismic Experiment (NETS). All stations are within or around the TP and provide a nearly complete coverage of the eastern TP. Waveform data from 779 regional events taken from the Preliminary Determination of Epicenters catalog (PDE) from the U. S. Geological Survey (USGS) and the China Seismic Network (CSN) catalog were used in this study (Figure 1). We limit the epicentral distances to greater than 3\( \degree \), the hypocentral depths to less than the Moho using the crustal thickness model of Shin et al. [2007], and magnitudes \( M_L \) to equal or less than 7 to avoid complicated source functions.

[6] We use the method of Xie [2002] in cutting \( L_g \) windows and calculating \( L_g \) spectral amplitude. In total, 18266 \( L_g \) spectra are calculated and compared with the pre-\( P_n \) noise spectra by setting a minimum signal–noise ratio of 2 to minimize the influence of ambient noise. We calculate RTM \( Q_L \) values at discrete frequencies of 0.5 Hz, 1 Hz, and 2 Hz. To select the reverse paths, we set criteria that the maximum difference for all azimuthal angles (\( \delta \theta_a, \delta \theta_b, \delta \theta_i, \) and \( \delta \theta_j \) in Figures S1b and S1d) is \( \pm 15^\circ \), the minimum inter-station/event distance for \( d_{ij} \) and \( d_{ab} \) is 150 km, and only paths with standard errors of less than 50% in measuring \( Q_L \) are used. Although the amount of RTS paths is much larger than that of RTE paths, the RTE measurements are important in areas without RTS path coverage, especially along the Longmenshan Fault (LMSF) which benefits from an extremely dense aftershock sequence that occurred after the Mw 7.9 Wenchuan earthquake (Figure 1). The measured \( Q_L \) values are subsequently used to map the lateral variations of \( Q_L \) at selected frequencies using an LSQR algorithm. Resolution tests (Figure S3) using 2-D checkerboard anomaly patterns and \( \pm 15\% \) random noise at different cell sizes and different frequencies show relatively good resolution at scales of 1\( ^\circ \times 1^\circ \) and 2\( ^\circ \times 2^\circ \) within most of the study area. We discretize the study area into 0.5\( ^\circ \times 0.5^\circ \) cells and obtain tomographic maps of \( Q_L \) at frequencies of 0.5 Hz, 1 Hz, and 2 Hz (Figure S4).

4. Result and Discussion

[7] The eastern TP and adjacent regions involved in this study are tectonically divided into a number of terranes that may correlate with strong variations in crustal properties [e.g., Klemperer, 2006]. The Lhasa Block, Qiangtang Terrane, and Songpan-Ganzi fold belt (SGFB) compose the majority of TP from south to north. The Longmenshan thrust belt, probably...
initiated in late Miocene to early Pliocene, separates the eastern TP and the Sichuan Basin. This area also includes the Qaidam Basin, the Qilian Shan-Nan Shan, and the Qinling mountain belt. The QLg tomographic maps at different frequencies show significant lateral variations but the pattern of the variation is not strongly frequency dependent. Thus QLg0 (QLg at 1 Hz) map (Figure 2a) mainly reflects the major Lg attenuation structure of the study area. The QLg0 values in this map can be divided into four ranges: low (QLg0 < 150), low to middle (150 < QLg0 < 250), middle to high (250 < QLg0 < 350), and high (QLg0 > 350). The northeastern TP that lies north and east of the Jinsha Suture has widespread low to middle QLg0 values. High QLg0 values are observed in the Sichuan Basin, Qaidam Basin, and Qinghai Lake-Gonghe Basin. A high QLg0 zone is located within the Eastern Himalayan Syntaxis (EHS) and probably extends eastward to the Bangong-Nujiang Suture in the southern TP. Along the Kunlun Mountains, we observe an low QLg0 “band” divides the Qaidam Basin and central TP. Another low QLg0 zone, approximately along the western Longmenshan thrust belt, divides the Sichuan Basin and eastern TP. An average QLg0 of 366 measured by McNamara et al. [1996] is within the range of QLg0 values (100-400) in the same area of our model. The low QLg0 values estimated by Xie [2002] and Fan and Lay [2003] for the northern TP are also similar with our result. And our model shows a very similar pattern of lateral variation QLg0 with the result of Phillips et al. [2000].

A complex velocity structure may lead to scattering attenuation and regional phase mode conversion when Lg propagates in a strongly heterogeneous crust [e.g., Kennett, 1989]. But a large number of studies imply that the QLg is a good estimation for crustal shear wave Qb, and the scattering only plays a minor role and is probably negligible at the site of origin.

Figure 2. (a) QLg and (b) QPg tomographic images at 1 Hz. Thick lines represent tectonic sutures, and thin lines represent faults. ANHF: Anninghe Fault; BNS: Bangong-Nujiang Suture; EHS: Eastern Himalayan Syntaxis; IP: Indian Plate; IYS: Indus-Yalu Suture; JS: Jinsha Suture; KL: Kunlun mountain belt; LB: Lhasa Block; LMS: Longmenshan mountain belt; MJF: Minjiang Fault; QB: Qaidam Basin; QLGB: Qinghai Lake-Gonghe Basin; QL: Qinling mountain belt; QLS-NS: Qilian Shan-Nan Shan Mountain belt; QT: Qiangtang Terrane; SB: Sichuan Basin; SGFB: Songpan-Ganzi fold belt; XSHF: Xianshuihe Fault; YGF: Yushu-Ganzi Fault.

Figure 3. (a) Lg site response maps at frequencies of 1 Hz. Here SS represents the site response of each station relative to the average of site responses within the whole area. We observe significant site response difference between the Tibetan Plateau and major basins, probably due to topography or sedimentary thickness. (b) A nearly linear relationship is observed between logarithm of the reciprocal of normalized source term (solved from Lg RTM at 1 Hz) and magnitude ML. The solid line represents the least-square linear fit line and the two dashed lines parallel to it represent its 95% confidence interval. It indicates that the source term solved from Lg amplitude using RTM is well correlated with seismic magnitude ML when 3 ≤ ML ≤ 7.
low frequencies [e.g., Mitchell, 1995]. We only measure Lg at frequencies around 1 Hz in our study, which is similar to the frequency ranges used in previous studies referenced above. As a result, the lateral variation of $Q_{Lg}$ should largely represent the lateral variation of crustal $Q_s$, and should help us to infer variations in geothermal structures.

[9] We observe of high $Q_{Lg}$ in the Qaidam Basin and Sichuan Basin with tectonically stable crust and low temperatures. The high $Q_{Lg}$ zone in the EHS may be related to the underthrusting Indian Plate. The low $Q_{Lg}$ band along the Kunlun Mountains within the SGFB correlates with a suggested low velocity zone (LVZ) in the middle to lower crust [e.g., Yang et al., 2010] and the high strain rate in this region [Holt et al., 2000]. This correlation suggests a connection between high strain rate, LVZ, and high seismic attenuation in the crust. Strain heating has been suggested as a mechanism for high temperature and partial melting in convergent orogens [Nabelek et al., 2010]. The crust of northern TP is probably dry and hot [Hacker et al., 2000]. If the low $Q_{Lg}$ along the Kunlun Mountains is caused by a hot crust, the high temperature and low viscosity crust (within the southwestern SGFB) may be caused by the high strain rate. The low $Q_{Lg}$ zone approximately along the eastern margin of TP also correlates with middle to lower crustal LVZ from recent observation [Li et al., 2010], but whether these two low $Q_{Lg}$ bands are connected is still unknown in our model because of no path coverage near the center of the SGFB.

[10] The site responses have a strong spatial structure across the TP (Figure 3a). We consistently observe high site responses within the Qaidam Basin and low site responses within the TP at different frequencies (Figure S5). The lateral variation does not correlate with either the difference in instrument response (Figure S2) or the Vs30 model in this area [Walld and Allen, 2007] (the global Vs30 model is available at http://earthquake.usgs.gov/hazards/apps/vs30/custom.php). Alternatively, it is possible that the site response strongly varies with the change in topography. Meanwhile, the site response may be affected by near-surface geological structures [Su et al., 1992]. Our result of high site responses within the Qaidam Basin, who has widespread sediment thicker than 10 km, suggests that thick sedimentary basins probably enhance the site amplification.

[11] In terms of our source terms, we observe a nearly linear relationship between the logarithm of the reciprocal of normalized source term and earthquake magnitude $M_l$ (Figure 3b) when $3 \leq M_l \leq 7$. This correlation is expected if a constant stress drop model is assumed [Reese et al., 1999]. Our result suggests that Lg amplitude can be used to investigate the earthquake magnitude by the RTM. This approach is probably only limited by seismic station distribution if all earthquakes are correctly located.

[12] Similar to $Q_{Pg}$ being used as a proxy of crustal $Q_s$, the $Q_{Pg}$ can be assumed to be a proxy of crustal $Q_s$. We apply a very similar data processing and inversion method to the $Pg$ data as we do with the $Lg$ data; while some parameters, such as the group velocity window, the geometrical spreading coefficient, the threshold of maximum inter-station distance, etc, have been revised to appropriate values for $Pg$ [Bao et al., 2011]. The calculated RTM $Q_{Pg}$ tomographic map is strongly correlated with the RTM $Q_{Lg}$ model (Figure 2b) with high attenuation regions throughout most of the north and northeastern TP and low attenuation regions surrounding the TP. We observe differences in the relative attenuation structure between $Pg$ and $Lg$ in part of Qiangtang Terrane that may indicate strong crustal heterogeneity causing different degrees of scattering attenuation effects on $Pg$ and $Lg$.

5. Conclusion

[13] Among various methods used to measure crustal Q, the RTM appears to be the most reliable. The estimation of site terms using the RTM in this study indicates that the site response is probably dependent on change of topography or sediment thickness. We observe a linear relationship between estimated logarithmic source terms and earthquake magnitudes $M_l$ when $3 \leq M_l \leq 7$. We create high-resolution (for $1° \times 1°$ to $2° \times 2°$ anomalies) $Q_{Lg}$ and $Q_{Pg}$ models of eastern TP and adjacent areas using the RTM. The $Q_{Lg}$ and $Q_{Pg}$ tomographic models show strong lateral variations in the eastern TP and adjacent areas. The very low Q values observed in northwestern SGFB may suggest a hot crust, which could be related to high strain rate.

[14] Acknowledgments. We are grateful to all members of the INDEPTH-IV and NETS teams, the Seismotectonic group at Peking University, and the IRIS DMC for collecting seismic data. We thank Daniel McNamara and an anonymous reviewer for helpful feedback greatly improving this paper. The research in this study is supported by the National Science Foundation of China under grants 40520120222 and 40821062, and the National Science Foundation of the United States under grants EAR-0634093, EAR-0409589, and EAR-0409870.

[15] The Editor thanks Daniel McNamara and an anonymous reviewer for their assistance in evaluating this paper.

References


X. Bao and E. Sandvol, Department of Geological Sciences, University of Missouri, 101 Geology Bldg., Columbia, MO 65203, USA. (xbqzb@mail.missouri.edu; sandvole@missouri.edu)

Y. J. Chen, Institute of Theoretical and Applied Geophysics, School of Earth and Space Sciences, Peking University, Beijing 100871, China. (johnyc@pku.edu.cn)

T. Hearn and J. Ni, Department of Physics, New Mexico State University, MSC 3D, Las Cruces, NM 88003, USA. (thearn@mnsu.edu; jni@mnsu.edu)

Y. Shen, Graduate School of Oceanography, University of Rhode Island, 203 Horn Bldg., South Ferry Road, Narragansett, RI 02882, USA. (yshen@gso.uri.edu)